Journal of Organometallic Chemistry, 381 (1990) 333-348
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands
JOM 20451

Bis(substituted benzoato) complexes of $\operatorname{bis}(\eta$-cyclopentadienyl)titanium(IV). Synthesis and mass-, ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$-NMR and IR-spectra

Y. Dang *, H.J. Geise *,
University of Antwerp (UIA), Department of Chemistry, Universiteitsplein 1, B-2610 Wilrijk (Belgium)
R. Dommisse, E. Esmans,
University of Antwerp (RUCA), Department of Organic Chemistry, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)
and H.O. Desseyn
University of Antwerp ($R U C A$), Department of Inorganic Chemistry, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

(Received April 4th, 1989)

Abstract

The syntheses of 32 complexes of the type $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{OOCC}_{6} \mathrm{H}_{4} \mathrm{X}\right)_{2}$ are reported together with their mass, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, mid- and far-IR spectra. The data are consistent with a model in which the Ti -OOC bond strength (weaker than that of $\mathrm{Ti}-\mathrm{Cp}$ and $\mathrm{Ti}-\mathrm{Hal}$) is stabilized by electron-withdrawing substituents X on the phenyl rings. The electronic influence of X also extends into the cyclopentadienyl rings.

Introduction

Titanium(IV) complexes of the type $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiL}_{2}$, where L is a monodentate and/or a potentially bidentate ligand, have been associated with catalysis in organic synthesis [1], reductive fixation of small molecules, e.g. CO [2] and even with anti-tumor activity [3], and so the synthesis and structure of titanocene complexes have received much attention in recent years [4-7]. In the present study we report the synthesis and spectra of complexes $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiL}_{2}$, where L is a substituted

[^0]benzoic acid ligand. We include also some complexes, mostly with ortho-substituted benzoic acid ligands, which have been synthesized recently by Dang et al. [8].

We show that mass spectroscopy provides a new and useful tool for characterization of these compounds. Furthermore, we show that substitution in the benzoato ligands affects NMR chemical shifts in the cyclopentadienyl ligand as well as in the $\mathrm{Ti}-\mathrm{OC}(\mathrm{O})$ moiety. This suggests that there is a variation in the $\mathrm{Ti}-\mathrm{O}$ bond strength, and this is corroborated by IR results in the mid-IR region. Far-IR spectra ($450-50$ cm^{-1}) are also reported.

Synthesis

All complexes were synthesized by reaction of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2}$ with the sodium salt of the appropriately substituted benzoic acid in benzene [9]. $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2}$ was purchased from Janssen Chimica and used without further purification. Sodium salts of the substituted benzoic acids were prepared from the acids and sodium hydroxide. Benzene was distilled from sodium-sand prior to use. All preparations were carried out under strictly anhydrous conditions. As a typical example we describe the preparation of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{OOCC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-o\right)_{2}$.

A mixture of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2}(1.25 \mathrm{~g} ; 5 \mathrm{mmol})$ and $2 \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COONa}(2.37 \mathrm{~g}$; 15 mmol) in 100 ml of anhydrous benzene was stirred at $30^{\circ} \mathrm{C}$ for 4 h , during which it turned from blood red to orange. The orange solution was filtered and the filtrate concentrated by a rotary evaporation, then kept in a refrigerator until crystals separated. The product was recrystallized from benzene. Yield: $1.0 \mathrm{~g}(48 \%)$; m.p. $162-164^{\circ} \mathrm{C}$ (dec.).

Small variations were encountered with the $4-\mathrm{NH}_{2}$ and $4-\mathrm{CH}_{3} \mathrm{CONH}$ substituted derivatives, which separated out during the stirring, and with the $2-\mathrm{Ph}, 2-\mathrm{CH}_{3} \mathrm{COO}$ and $3-\mathrm{CH}_{3} \mathrm{O}$ derivatives, which were precipitated from the concentrated filtrate by addition of petroleum ether $\left(60-80^{\circ} \mathrm{C}\right)$.

Table 1 gives the results for 32 complexes. Elemental analyses (Janssen Pharmaceutica, Beerse, Belgium) were satisfactory, with C, H and N percentages within 0.25% of the theoretical values. The complexes are orange-red to yellow solids, and are stable under dry conditions but susceptible to hydrolysis and alcoholysis. They are soluble in benzene, tetrahydrofuran, chloroform, and acetone, and insoluble in hexane and petroleum-ether.

Mass spectra

The mass spectrum of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ has been thoroughly investigated by use of electron impact (EI) at various electron energies [10-12], chemical ionization (CI) [13], and secondary ion (SI) methods [14]. In contrast, mass spectral data for $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}(\mathrm{OCOR})_{2}$ compounds, where R is an aliphatic or aromatic residue, are rare $[15,16]$. Instead these compounds are normally studied by IR and NMR spectroscopy and X-ray diffraction [17,18]. The mass spectra of titanium-containing poly- α-amino acids did not show titanium-containing ions characteristic of the

Table 1
Yields and properties of phenyl substituted complexes of bis(cyclopentadienyl)bis(benzoato)titanium(IV), $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{OOCC}_{6} \mathrm{H}_{4} \mathrm{X}\right)_{2}$

	X	Colour	Melting point (${ }^{\circ} \mathrm{C}$)	Yield (\%)
1	H	yellow	190-191 (dec.)	86
2	$4-\mathrm{NH}_{2}$	yellow	195 (dec.)	88
3	$4-\mathrm{OMe}$	yellow	138-140	67
4	4-OEt	orange	149-151	61
5	4-Me	orange	174-176 (dec.)	40
6	4-Et	orange	157-159 (dec.)	30
7	$4-\mathrm{t}-\mathrm{Bu}$	orange	195-197 (dcc.)	17
8	4-Ph	yellow	172-174	73
9	4-F	orange-red	185-187 (dec.)	81
10	$4-\mathrm{Cl}$	orange	188-190 (dec.)	62
11	$4-\mathrm{Br}$	orange-red	179-181 (dec.)	75
12	4-I	orange	168-172 (dec.)	35
13	$4-\mathrm{CN}$	orange	203-205 (dec.)	66
14	$4-\mathrm{NO}_{2}$	orange	227-230 (dec.)	77
15	4- $\mathrm{CH}_{3} \mathrm{CONH}$	yellow	205 (dec.)	78
16	3 -OMe	orange	129-131	18
17	3-Me	orange	143-145 (dec.)	40
18	3-F	orange	185 (dec.)	81
19	$3-\mathrm{Cl}$	orange-red	173-175	48
20	$3-\mathrm{Br}$	orange-red	159-161	35
21	3-I	orange-red	153-154	7
22	$3-\mathrm{CN}$	orange	199-201 (dec.)	55
23	$3-\mathrm{NO}_{2}$	orange	215-217 (dec.)	44
24	$2-\mathrm{Me}$	orange	162-164 (dec.)	48
25	2-Ph	yellow	169-171 (dec.)	4
26	2-F	orange-red	175-177 (dec.)	59
27	$2-\mathrm{Cl}$	orange	164-166 (dec.)	48
28	2-I	yellow	183-185 (dec.)	65
29	$2-\mathrm{CH}_{3} \mathrm{COO}$	orange-brown	148-150 (dec.)	7
30	$2,4-\mathrm{Cl}, \mathrm{Cl}$	orange-red	201-203 (dec.)	80
31	$3,4-\mathrm{Cl}, \mathrm{Cl}$	orange-red	203-205 (dec.)	68
32	2 -furyl ${ }^{\text {a }}$	orange	182-184 (dec.)	34

${ }^{a}$ Ligand in $\mathrm{CP}_{2} \mathrm{Ti}\left(\mathrm{OOC}\right.$-furyl) ${ }_{2}$.
polymer ligand [19]. Our compounds, however, can be fully characterized from their mass spectra.

Low resolution electron impact (EI) spectra were obtained with a Jeol OI-SG-II spectrometer connected to a Jeol JEC-6 computer system. The ionisation energy was maintained at 70 eV and the ionisation current was $300 \mu \mathrm{~A}$. All compounds were introduced by means of a direct probe insertion system. Desorption chemical ionisation (DCI) mass spectra of compounds 6 and 13 were recorded on a Ribermag 10-10B (Nermag S.A.) quadrupole mass spectrometer equipped with a Sidar data system. Primary ionisation of the NH_{3} reagent gas was performed with 70 eV electrons. The ionisation current was 0.08 mA , the source temperature $100^{\circ} \mathrm{C}$, and the pressure in the ionisation chamber 0.1 mmHg .

Fast atom bombardment (FAB) spectra and linked scans on compounds 1 and 14 were obtained with a VG70-SEQ hybrid mass spectrometer (VG Analytical Ltd., Manchester, U.K.), equipped with an Ion Tech saddle field ion gun. The instrument

Fig. 1. Some resonance hybrids of $\mathrm{CP}_{2} \mathrm{TiL}_{2}$, and the concept of tocalised polarisation [29].
consists of a high resolution double focussing mass spectrometer with EB configuration (MS-I) followed by an RF-only quadrupole collision gas cell and a high performance quadrupole mass analyzer (MS-II). Xenon atoms with energies of approximately 8 keV and a beam flux of 1 mA , were used as the ionizing beam. Positive and negative FAB spectra were recorded under the control of the VG 11-250J data system by repetitive scanning over the range $20-600 \mathrm{a} . \mathrm{m} . \mathrm{u}$., with a scan time of $2 \mathrm{~s} /$ decade.

Standard EI spectra were taken of all compounds. In an effort to obtain high signal intensity and minimize fragmentation of the high mass ions the probe temperature was varied over a wide range ($200-400^{\circ} \mathrm{C}$), revealing an unexpected influence (Table 2) upon the fragmentation. Because of this and because of the low decomposition temperature (Table 1) of most of the compounds the question arises whether the EI spectra are really representative of the title compounds $\left(\mathrm{Cp}_{2} \mathrm{TiL}_{2}\right)$ and not of thermolysis products. The presence of a molecular ion would be helpful, but none of the EI spectra shows such a signal. Unfortunately neither the CI spectra (with NH_{3} as the reagent gas) of compounds $\mathbf{6}$ and $\mathbf{1 3}$, nor the FAB spectra (using glycerol, m-nitrobenzyl alcohol mixed with dichloromethane, and 18-crown- 6 mixed with 2% tetraglyme as matrices) of compounds 1 and 14 showed a molecular ion. Thus thermolysis cannot be rigorously excluded. Nevertheless, we believe that the spectra presented in Tables 3 and 4, are representative of the title compounds. The spectra are recorded at the lowest possible temperature ($200-250^{\circ} \mathrm{C}$). At still lower temperatures no EI spectrum could be recorded.

The data (Tables 2-4) show several interesting features. First, the spectra are in agreement with the structures proposed for the title products. Although they do not show the molecular ion (as in the case for the SIMS spectrum of $\mathrm{Cp}_{2} \mathrm{TiL}_{2}$ [14]), they do give peaks corresponding to structurally informative ions, e.g. ($\mathrm{Cp}_{2} \mathrm{TiL}$). (CpTiL), ($\mathrm{CpTiL}_{2}-\mathrm{CO}_{2}$), ($\mathrm{Cp}_{2} \mathrm{Ti}$) and (CpTi) (see Table 3). Furthermore, numerous ions characteristic of the ligands L are present, including the molecular ion of the free substituted benzoic acid, HL (see Table 4).

Second, the loss of a benzoic acid ligand L ' radical seems to be preferred over the loss of a $\mathrm{Cp}{ }^{\circ}$ radical from the unstable molecular ion $\left(\mathrm{Cp}_{2} \mathrm{TiL}_{2}\right)^{+}$. In fact at the lower temperatures $\left(200-240^{\circ} \mathrm{C}\right)$ of the direct probe the $\left(\mathrm{Cp}_{2} \mathrm{TiL}\right)^{+}$ion is often the base peak. It is necessary to raise the temperature to about $300^{\circ} \mathrm{C}$ to observe a $\left(\mathrm{CpTiL}_{2}\right)^{+}$ion, which then reaches intensities of up to 25% of the base peak. proving that the loss of the stable Cp° radical is indeed a competitive process. The major loss of L is in accordance with the well-known preference for ejection of the heaviest radical and the most effective carrier of the excess of energy. It can also be regarded as reflecting a greater strength of the $\mathrm{Ti}-\mathrm{Cp}$ bond than of the $\mathrm{Ti}-\mathrm{OOC}$

Table 2
Relationship between fragmentation and temperature of the direct probe in EIMS of $\mathrm{Cp}_{2} \mathrm{TiL}_{2}$ complexes $\mathrm{L}=00 \mathrm{OCC}_{6} \mathrm{H}_{4} \mathrm{X}$, with X a substituent on the phenyl ring. Entries numbered as in Table 1

Nr.	X	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Base peak at m / z	CpTiL_{2}		$\mathrm{Cp}_{2} \mathrm{TiL}$		CpTiL		$\underline{\mathrm{CpTiL}-\mathrm{CO}_{2}}$	
				m / z	int.						
3	$4-\mathrm{OMe}$	240	135			329	1	264	0	220	0
		205	135				70		40		23
		200	329				100		54		35
		190	329				100		39		20
4	4-OEt	400	121	443	2	343	10	278	6	234	3
		360	121		2		21		8		6
		280	343		4		100		44		23
		250	343		0		100		44		28
		200	343		0		100		49		21
5	4-Me	400	91	383	4	313	44	248	35	204	28
		300	119		26		66		42		29
		260	313		25		100		75		52
		250	313		7		100		75		57
		230	313		0		100		74		69
		220	313		0		100		79		57
17	3-Me	370	91	383	0	313	0	248	0	204	0
		280	66		10		18		9		9
		260	91		6		43		34		28
		200	313		0		100		76		73
24	2-Me	350	119	383	0	313	0	248	0	204	0
		300	119		7		14		13		13
		260	119		10		21		13		14
		230	119		10		57		34		39
		200	119		4		87		57		71
9	4-F	400	123	391	10	317	19	252	21	208	12
		200	123		0		63		86		48
26	2-F	400	123	391	0	317	4	252	4	208	14
		205	123		0		59		32		72
10	4-Cl	400	139	423	5	333	32	268	33	224	20
		380	139		2		59		55		22
		230	333		0		100		84		34
19	$3-\mathrm{Cl}$	240	66	423	6	333	90	268	49	224	12
		210	333		10		100		48		13
		180	333		0		100		73		19
21	3-I	240	66			425	11	360	12	316	2
		230	66				41		29		3
		190	425				100		58		8
		160	425				100		69		12
28	2-I	250	66			425	48	360	4	316	8
		230	425				100		10		17
		210	425				100		8		13
30	2,4-Cl, Cl	380	173	493	4	367	0	302	0	258	0
		280	66		0		34		8		12
31	$3,4-\mathrm{Cl}, \mathrm{Cl}$	380	173			367	3	302	2	258	0
		270	66				70		47		4
32	2-furyl ${ }^{\text {a }}$	380	68	335	23	289	8	224	6	180	7
		220	289		0		100		12		56

[^1]Table 3
Ti-containing ions in mass spectra of $\mathrm{Cp}_{2} \mathrm{TiL}_{2}$ complexes ($\mathrm{L}=$ ligand, and $\mathrm{X}=$ substituent on phenyl ring). m / z values with intensities ($\%$ of the base peak) in parentheses. Entries numbered as in Table 1. Direct probe temperature in column 1

Entry	X	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Mol weight	Base peak at	$\mathrm{CP}_{2} \mathrm{TiL}$	CpTiL	$\mathrm{CpTiL}-\mathrm{CO}_{2}$	$\mathrm{CP}_{2} \mathrm{Ti}$	$\mathrm{CpTi}^{\text {P }}$	CpTiL- $\mathrm{CO}_{2}-\mathrm{HX}$
1	H	205	420	299	299(100)	234(80)	190(79)	178(6)	113(18)	
2	4- NH_{2}	200	450	66	314(5)	249(2)	205(2)			
3	$4-\mathrm{OMe}$	200	480	329	329(100)	264(54)	220(35)	178(5)	113(4)	188(2)
16	3-OMe	320	480	66	329(7)	264(4)	220(1)			
4	4-OEt	200	508	343	343(100)	278(49)	234(21)	178(7)	113(4)	188(2)
5	4-Me	220	448	313	313(100)	248(79)	204(57)	178(13)	113(8)	
17	3-Me	200	448	313	313(100)	248(76)	204(74)	178(7)	113(14)	
24	2-Me	200	448	119	313(87)	248(57)	204(71)	178(18)	113(14)	
6	$4-\mathrm{Et}$	240	476	327	327(100)	262(26)	218(23)			
7	$4-\mathrm{t}-\mathrm{Bu}$	220	532	163	355(4)	290(1)	246(2)	178(19)		
8	4-Ph	280	572	66	375(28)	$310(8)$	266(8)		113(3)	
25	2-Ph	200	572	375	375(100)	$310(6)$	266(32)	178(6)	113(4)	188(5)
9	4-F	200	456	123	317(63)	252(86)	208(48)	178(11)	113(14)	188(7)
18	3-F	200	456	317	317(100)	252(85)	208(64)	178(11)	113(13)	188(10)
26	2-F	205	456	123	317(59)	252(32)	208(72)	178(8)	113(9)	188(27)
10	4-Cl	230	488	333	333(100)	268(84)	224(34)	178(17)	113(24)	188(7)
19	$3-\mathrm{Cl}$	210	488	333	333(100)	268(48)	224(13)	178(14)	113(27)	188(8)
27	$2-\mathrm{Cl}$	210	488	333	333(100)	268(10)	224(25)	178(8)	113(21)	188(36)
11	$4-\mathrm{Br}$	210	576	66	377(64)	312(48)	268(23)	178(8)	113(15)	
20	$3-\mathrm{Br}$	200	576	377	377(100)	312(56)	268(7)	178(14)	113(12)	188(6)
12	4-1	200	672	425	425(100)	360(45)	316(8)	178(7)	113(11)	
21	3-I	190	672	425	425(100)	360(58)	316(8)	178(26)	113(21)	188(9)
28	2-1	230	672	425	425(100)	360(10)	316(17)	178(21)	113(34)	188(40)
14	$4-\mathrm{NO}_{2}$	205	510	445	344(9)	279(4)			113(1)	
23	$3-\mathrm{NO}_{2}$	180	510	314	$344(26)$	279(7)		178(13)	113(11)	
13	$4-\mathrm{CN}$	230	470	324	324(100)	259(39)	215(34)	178(3)	113(17)	188(10)
22	$3-\mathrm{CN}$	220	470	66	324(18)	259(18)	215(13)	178(1)	113(3)	188(5)
30	2,4-Cl, Cl	280	556	66	367(34)	302(8)	258(12)	178(3)		222(29)
31	$3.4-\mathrm{Cl}, \mathrm{Cl}$	270	556	66	367(70)	302(47)	258(4)	178(6)	113(5)	222(47)
32	2-furyl ${ }^{\text {a }}$	220	400	289	289(100)	224(12)	180(56)	178(20)	$113(12)$	

[^2]Table 4
Ligand ions in the mass spectra of $\mathrm{C}_{2} \mathrm{TiL}_{2}$ complexes $\mathrm{L}=\mathrm{OOCC}_{6} \mathrm{H}_{4} \mathrm{X}$, with X a substituent on the phenyl ring. Other conditions as in Table 3.

	X	HL				Other fragments
		$\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{COOH}$	$\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}$	$\mathrm{XC}_{6} \mathrm{H}_{4}$	Phenyl	
1	H	122(32)	105(73)		77(91)	
2	4-NH2		120(4)		$78(9)$	
3	4-OMe	152(11)	135(67)	107(9)	77(16)	92(12) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}$
16	3-OMe	152(50)	135(27)	107(14)	77(13)	105(7) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}: 92(6) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}$
4	$4-\mathrm{OEt}$	166(11)	149(37)	121(54)	$77(2)$	$\begin{gathered} 138(17) \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH} \\ 121(54) \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{CO} \\ 93(13) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH} \end{gathered}$
5	4-Me	136(33)	119(51)	91 (59)	78(10)	
17	3-Me	136(44)	119(69)		$77(10)$	
24	2-Me	136(30)	119(100)	91(90)	$77(8)$	
6	4-F.t	150(20)	133(16)	105(25)	77(15)	
7	4-t-Bu	178(17)	161(35)	133(3)	77(12)	$\begin{gathered} 163(100) " 178 "-\mathrm{CH}_{3}, \\ 147(5) " 163 "-\mathrm{CH}_{3}, \\ 135(27) " 163 " \mathrm{CO} \\ 119(10) " 147 "-\mathrm{CO}, \\ 105(10) \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, \\ 91(25) \mathrm{C}_{7} \mathrm{H}_{7} \end{gathered}$
8	4-Ph	198(40)	181(39)	153(36)	76(12)	
25	2-Ph	198(11)	181(51)	153(20)	$76(4)$	
9	4-F	140(39)	123(100)	$95(81)$	$75(38)$	104(6) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$
18	3-F	140(25)	123(75)	95(100)	75(44)	
26	2-F	140(22)	123(100)	95(46)	75(26)	$106(8) \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CO}$
10	$4-\mathrm{Cl}$	156(21)	139(44)	$111(39)$	75(26)	104(14) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$
19	$3-\mathrm{Cl}$	156(33)	139(48)	$111(50)$	75(24)	
27	$2-\mathrm{Cl}$		139(55)	111(36)	75(34)	
11	$4-\mathrm{Br}$	200(17)	183(27)	155(25)	76(28)	104(14) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$
20	$3-\mathrm{Br}$	200(90)	183(89)	155(44)	76 (30)	104(7) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$
12	4-I	248(40)	231(36)	203(12)	76 (23)	$\begin{gathered} 121(9) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}, \\ 104(9) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO} \end{gathered}$
21	3-I	248(64)	231(46)	203(39)	76(63)	$\begin{gathered} 121(39) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH} \\ 104(12) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO} \end{gathered}$
28	2-I	248(88)	23176)	203(32)	76(78)	$\begin{gathered} 122(35) \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \\ 105(58) \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO} \end{gathered}$
14	$4-\mathrm{NO}_{2}$	167(7)	150(83)		76(12)	$\begin{gathered} 135(6) \mathrm{HL}-\mathrm{NO}-2 \mathrm{H}, \\ 104(28) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO} \end{gathered}$
13	4-CN	147(21)	130(39)	102(35)	76(11)	
22	$3-\mathrm{CN}$	147(17)	130(35)	102(19)	$76(8)$	
30	$2,4-\mathrm{Cl}, \mathrm{Cl}$	190(21)	173(48)	145(11)	75(16)	
31	$3,4-\mathrm{Cl}, \mathrm{Cl}$	190(21)	173(39)	145(19)	75(19)	
32	2 -furyl ${ }^{\text {a }}$	112(46)	95(39)	67(74)		39(35) $\mathrm{C}_{3} \mathrm{H}_{3}$

${ }^{a}$ Ligand in $\mathrm{CP}_{2} \mathrm{Ti}\left(\mathrm{OOC}\right.$-2-furyl) ${ }_{2}$.
bond. The interpretation in terms of bond strengths is in our opinion an attractive working model, because it simultaneously rationalizes aspects of the MS, NMR, IR and X-ray data (see below).

Third, in the low temperature spectra exceptions are observed for the $4-\mathrm{NO}_{2}$ and 3- NO_{2} complexes (14 and 23), where the intensity of the $\left(\mathrm{C}_{2} \mathrm{TiL}\right)^{+}$ion is low (-5%) and that of the $\left(\mathrm{CpTiL}_{2}\right)^{+}$ion is high $(\sim 100 \%)$. The following rationaliza-

Fig. 2. Major fragmentation paths in EIMS of $\mathrm{Cp}_{2} \mathrm{TiL}_{2}$ complexes with $\mathrm{L}=\mathrm{OOCC}_{6} \mathrm{H}_{4} \mathrm{X}$ and $\mathrm{X}=$ substituent on phenyl.
tion may be given. Part of the $\mathrm{Ti}-\mathrm{O}$ bonding is due to interaction of lone pairs at oxygen with low-lying Ti orbitals. The more readily these lone pairs are available, the stronger the $\mathrm{Ti}-\mathrm{O}$ bond will be. This availability is greater the more resonance the hybrid a (Fig. 1) describes the actual electron density in the complex. In other words the influence of hybrid \mathbf{b} (Fig. 1) interferes with this part of the $\mathrm{Ti}-\mathrm{O}$ bond and the better hybrid b portrays the electron density the weaker the $\mathrm{Ti}-\mathrm{O}$ bond will be. Substitution on the phenyl ring by a strong electron-withdrawing group such as NO_{2} polarizes the π-electrons locally in the $\mathrm{C}=\mathrm{O}$ bond [29] as shown in Fig. 1c. Such polarisation could also be regarded as a decrease of importance of hybrid b and an increase of a, with concomitant strengthening of the Ti-O bond. If so, then meta substituents with $+M ;-I$ effect will also exercise a stabilizing influence on the $\mathrm{Ti}-\mathrm{O}$ bond. In keeping with this, the $\left(\mathrm{CpTiL}_{2}\right)^{+}$ion is observed in such compounds in the $200-250^{\circ} \mathrm{C}$ range.

Fourth, linked scan experiments proved that the high intensity ion (CpTiL) ${ }^{+\cdot}$ originates from $\left(\mathrm{Cp}_{2} \mathrm{TiL}\right)^{+}$and not from $\left(\mathrm{CpTiL}_{2}\right)^{+\cdot}$. Furthermore $\left(\mathrm{Cp}_{2} \mathrm{Ti}\right)^{+\cdot}$ was shown not to be a direct daughter of $\left(\mathrm{Cp}_{2} \mathrm{TiL}\right)^{+}$. Thus, whereas $\left(\mathrm{Cp}_{2} \mathrm{TiL}\right)_{2}$ loses Cp with difficulty, $\left(\mathrm{Cp}_{2} \mathrm{TiL}\right)$ easily loses Cp^{\cdot} and not its second $\mathrm{L} \cdot$ ligand. The latter behaviour can be explained in terms of a combination of an entropy effect (twice the chance of losing the stable Cp radical) and an increasing bond strength of $\mathrm{Ti}-\mathrm{O}$ upon $\mathrm{Cp}_{2} \mathrm{TiL}$ formation (see Fig. 2). We also mention yet another possibility, namely that the phenomenon could be a reflection of a difference in $\mathrm{Ti}-\mathrm{O}$ bond strength between the two benzoic acid ligands in the neutral $\mathrm{Cp}_{2} \mathrm{TiL}_{2}$ molecule. Support for such a difference stems from single crystal X-ray diffraction study of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OOCC}_{6} \mathrm{H}_{5}\right)_{2}$ [7,18c,20]; in the orthorhombic form (β-modification) two quite different monodentate carboxylates were observed [7,20].

Fifth, the $\left(\mathrm{Cp}_{2} \mathrm{TiL}\right)$ ion is found by linked scan to fragment into (XArCO$)^{+}$by ejection of the neutral molecule $\mathrm{Cp}_{2} \mathbf{T i O}$. This fragmentation, however, is only a minor path. In contrast, the similar reaction of $\left(\mathrm{CpTiL}_{2}\right)^{+}$, with ejection of CpLTiO
to yield (XArCO$)^{+}$, is a major fragmentation pathway. A minor route here is the loss of CO_{2}.

Sixth, fragmentation of CpTiL may follow several paths. It may lose CO or CO_{2}, and Table 3 shows that the loss of CO_{2} is the preferred process, giving rise to a stable ion in which Ti is directly bonded to aryl type ligands. The latter ion $\mathrm{CpTi}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}\right)$ may then (i) lose HX or (ii) rearrange to CpTiX . The rearrangement is prominent when $\mathrm{X}=\mathrm{Hal}$, with fluorine showing the strongest tendency to coordinate titanium. In fact the fluorine-containing complexes exhibit a series of such rearrangements, leading to characteristic ions including $[\mathrm{Ti}(\mathrm{L})(\mathrm{F})]^{+}$; they lose both their Cp ligands. This confirms reports by other researchers $[16,21]$ that fluorine migrates readily from a phenyl ring to titanium in these complexes.

Finally, Fig. 2 summarizes the major fragmentation pattern for the title compounds.

Table 5
Proton chemical shifts (in ppm , relative to TMS) of ($\left.\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{OOCC}_{6} \mathrm{H}_{4} \mathrm{X}\right)_{2}$ complexes in CDCl_{3} solution

X	$\mathrm{C}_{5} \mathrm{H}_{5}$	H(2)	H(3)	H(4)	H(5)	H(6)	Other protons
H	6.64	8.10	7.50	7.50	7.50	8.10	
4-NH2	6.59	7.84	6.66		6.66	7.84	
$4-\mathrm{OMe}$	6.64	8.03	6.96		6.96	8.03	$3.88\left(\mathrm{OCH}_{3}\right)$
$4-\mathrm{OEt}$	6.65	8.04	6.97		6.97	8.04	$1.47\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.17\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$
4-Me	6.65	7.99	7.28		7.28	7.99	$2.44\left(\mathrm{CH}_{3}\right)$
$4-\mathrm{El}$	6.69	8.08	7.36		7.36	8.08	$1.31\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.77\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$
4-t-Bu	6.63	8.04	7.48		7.48	8.04	$1.31\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$
4-Ph	6.70	8.16	7.71		7.71	8.16	7.71, 7.48, 7.26 (H on $4-\mathrm{Ph}$)
4-F	6.66	8.04	7.14		7.14	8.04	
$4-\mathrm{Cl}$	6.63	7.95	7.41		7.41	7.95	
$4-\mathrm{Br}$	6.63	7.91	7.59		7.59	7.91	
4-I	6.64	7.80	7.80		7.80	7.80	
$4-\mathrm{CN}$	6.69	8.14	7.77		7.77	8.14	
4- NO_{2}	6.68	8.10	8.42		8.42	8.10	
$3-\mathrm{OMe}$	6.67	7.64		7.10	7.38	7.70	$3.86\left(\mathrm{OCH}_{3}\right)$
3-Me	6.63	7.84		7.32	7.34	7.84	$2.42\left(\mathrm{CH}_{3}\right)$
3-F	6.64	7.80		7.28	7.46	7.80	
$3-\mathrm{Cl}$	6.64	7.95		7.44	7.44	7.95	
$3-\mathrm{Br}$	6.69	8.26		7.74	7.46	8.08	
3-I	6.64	8.42		7.93	7.26	8.03	
$3-\mathrm{CN}$	6.76	8.40		7.84	7.84	7.84	
$3-\mathrm{NO}_{2}$	6.72	8.84		7.78	7.78	8.43	
2-Me	6.63		7.44	7.44	7.44	7.82	$2.62\left(\mathrm{CH}_{3}\right)$
$2-\mathrm{Ph}$	6.12		7.26	7.26	7.26	7.90	7.26(H on 2-Ph)
2-F	6.59		7.12	7.36	7.12	7.87	
$2-\mathrm{Cl}$	6.67		7.28	7.28	7.28	7.74	
2-I	6.66		7.70	7.30	7.09	7.93	
$2,4-\mathrm{Cl}, \mathrm{Cl}$	6.66		7.46		7.26	7.76	
$3,4-\mathrm{Cl}, \mathrm{Cl}$	6.69	8.10			7.61	7.92	
2 -furyl ${ }^{\text {a }}$	6.64		7.12	6.52	7.59		
$2-\mathrm{CH}_{3} \mathrm{COO}$	6.68		7.43	6.99	6.99	7.86	$6.43\left(\mathrm{CH}_{3} \mathrm{COO}\right)$

[^3]Table 6. ${ }^{13} \mathrm{C}$ chemical shifts (in ppm, relative to TMS) of $\left(\boldsymbol{T}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{OOC}_{6} \mathrm{H}_{4} \mathrm{X}\right)_{2}$ complexes in CDCl_{3} solution

X	$\mathrm{C}_{5} \mathrm{H}_{5}$	$\mathrm{C}=0$	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	Other carbons
H	118.49	172.04	133.78	129.88	128.18	131.71			
4- NH_{2}	118.25								
$4-\mathrm{OMe}$	118.49	172.16	126.41	131.95	113.49	162.66			$55.44\left(\mathrm{OCH}_{3}\right)$
4-OEt	118.43	172.16	126.23	131.89	113.98	161.99			$63.72\left(\mathrm{OCH}_{2}\right), 14.74\left(\mathrm{CH}_{3}\right)$
4-Me	118.43	172.22	130.98	130.06	128.98	142.19			$21.57\left(\mathrm{CH}_{3}\right)$
4-Et	118.49	172.28	131.34	130.19	127.75	148.46			$28.94\left(\mathrm{CH}_{2}\right), 15.47\left(\mathrm{CH}_{3}\right)$
$4-\mathrm{t}-\mathrm{Bu}$	118.37	172.16	131.04	129.88	125.13	155.22			34.91(C), 31.19(CH_{3})
$4-\mathrm{Ph}$	118.61	172.16	132.56	130.49	127.02	144.62			1a: 140.42, 2a: 127.26, 3a: 128.91, 4a: 127.87
4-F	118.67	171.00	130.06	132.20	115.14	165.12			
$4-\mathrm{Cl}$	118.73	171.06	132.26	131.22	128.48	138.17			
$4-\mathrm{Br}$	118.73	171.12	132.68	131.47	131.47	126.77			
4-1	118.73			131.47	137.62	96.01			
$4-\mathrm{CN}$	119.10	169.97	137.62	130.25	132.20	115.38			$118.06(\mathrm{CN})$
$4-\mathrm{NO}_{2}$	119.22	168.44	141.46	130.73	123.55				
$3-\mathrm{OMe}$	118.61	171.86	135.18	114.47	159.67	118.19	129.15	122.39	$55.32\left(\mathrm{OCH}_{3}\right)$
3-Me	118.49	172.16	133.72	130.49	137.80	132.50	128.12	127.08	$21.32\left(\mathrm{CH}_{3}\right)$
3-F	118.86	170.88	136.12	116.71	163.28	118.40	129.82	125.56	
$3 . \mathrm{Cl}$	118.79	170.64	135.55	129.94	134.39	131.77	129.64	127.93	
$3-\mathrm{Br}$	118.73	170.33	135.67	132.81	122.39	134.63	129.94	128.36	
3-I	118.73	170.21	135.61	138.77	94.00	140.54	130.12	128.96	
$3-\mathrm{CN}$	119.10	169.66	134.94	133.54	112.64	129.46	128.30	133.78	118.37(CN)
$3-\mathrm{NO}_{2}$	119.22	169.48	135.61	124.76	148.40	126.41	129.70	135.61	
2-Me	118.25	173.01	133.29	139.08	130.61	131.40	125.37	130.86	$\begin{aligned} & 21.87\left(\mathrm{CH}_{3}\right), 1 \mathrm{a}: 140.97,2 \mathrm{a}: 127.99,3 \mathrm{a}: \\ & 128.66,4 \mathrm{a}: 127.99 \end{aligned}$
2-Ph	118.06	174.84	135.91	142.31	127.02	130.43	127.02	129.45	
2-F	118.73	166.92	122.42	162.91	116.66	132.99	123.67	132.50	
$2-\mathrm{Cl}$	118.67	170.58	132.44	133.96	130.49	131.10	126.35	130.98	
2-I	118.86	171.67	139.14	93.88	140.79	131.28	127.75	130.80	
2,4-Cl, Cl	118.98	169.91	132.32	133.90	130.61	136.77	126.84	132.32	
$3,4-\mathrm{Cl}, \mathrm{Cl}$	118.98	169.91	132.74	131.83	133.66	136.40	130.49	128.91	
2-furyl ${ }^{\text {a }}$	118.79	164.12		147.79	116.54	111.61	145.23		
$2-\mathrm{CH}_{3} \mathrm{COO}$	119.22								

[^4]
Nuclear magnetic resonance spectra

Proton and carbon nuclear magnetic resonance spectra were recorded on a Jeol NMR PS-100 and a Jeol NMR FX100 spectrometer, respectively. All spectra were recorded at room temperature, with CDCl_{3} as solvent and tetramethylsilane as internal standard. Signals of the phenyl protons and carbons are readily assigned by applying standard increments for the substituents [22] to the known chemical shifts of the unsubstituted bis-benzoato complex [7,8,18]. In the ${ }^{1} \mathrm{H}$ spectra normal $\mathrm{H}-\mathrm{H}$ coupling constants ($J_{o} 8 \mathrm{~Hz}$ and $J_{m} 2 \mathrm{~Hz}$) are observed. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are given in Tables 5 and 6 , respectively.

The 10 protons of the two cyclopentadienyl rings are chemically equivalent and give rise to one sharp singlet. In the case of the ortho-phenylbenzoato complex these protons give the singlet at $\delta 6.12 \mathrm{ppm}$, probably because of the shielding effect of the phenyl ring. For all other complexes the signals appear in the range $\delta 6.59$ to 6.76 ppm . Although at an accuracy of $\pm 0.02 \mathrm{ppm}$ for $\delta\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ no statistically significant conclusion can be drawn, there are clear indications that electronwithdrawing substituents on the phenyl ring cause an increase in the chemical shift of the cyclopentadienyl protons and electron-releasing substituents cause a decrease.

The situation for the 10 carbon atoms of the two cyclopentadienyl rings is quite similar. They also show one sharp singlet, with the signals for the ortho-phenylbenzoato complex appearing at the lowest δ value. namely 118.06 ppm . For the other complexes the signals fall in the range 118.25-119.22. The ${ }^{13} \mathrm{C}$ chemical shifts of the cyclopentadienyl carbons can be correlated with the electronic properties of the substituents on the phenyl rings. As expected electron-donating groups shield the cyclopentadienyl carbons, causing an up-field shift, while electron-withdrawing groups cause a down-field shift.

On the other hand the carboxylato carbons, giving signals between 164.12 and 174.84 ppm , show the opposite trend; that is there is a decrease in chemical shift with electron-withdrawing substituents and an increase with electron-donating substituents on the phenyl ring. Such a reversed shift effect has been observed for many other compounds [23,24]. It has been shown by Brownlee and others [29] to arise predominantly from local polarisation of the $\mathrm{C}=\mathrm{O}$ bond by the inductive field of the substituent (Fig. 1c). As such it reflects the greater impact of resonance hybrid a (Fig. 1) in the presence of an electron-withdrawing substituent and of hybrid \mathbf{b} in the presence of a donating one.

Infrared spectra

Infrared spectra were recorded on a Bruker $113 v$ FT spectrometer. Samples were recorded under vacuum, as KBr pellets in the mid-IR ($4000-400 \mathrm{~cm}^{-1}$), and as polyethylene pellets in the far-IR $\left(500-100 \mathrm{~cm}^{-1}\right)$. For the mid-IR spectra a $\mathrm{KBr} / \mathrm{Ge}$ beam-splitter and a KBr -window DTGS detector were used, and for the far-IR a mylar beam-splitter and a PE-window DTGS detector. In both regions a globar source was used. Either 32 scans (mid-IR) or 64 scans (far-IR) were co-added to give spectra with $1 \mathrm{~cm}^{-1}$ resolution.

In the mid-IR, $C-H$ stretching bands appear near 3100 and $3080 \mathrm{~cm}^{-1}$, characteristic of cyclopentadienyl and phenyl rings, respectively. In the ring breathing range, characteristic bands of the phenyl ring appear near 1580 and $1500 \mathrm{~cm}^{-1}$,

Table 7
IR frequencies $\left(\mathrm{cm}^{-1}\right)$ of the vibrations in the COO group

X	$\nu_{\text {asym }}$	$\nu_{\text {sym }}$
H	$1650 \mathrm{~m}, 1635 \mathrm{vs}$	$1336 \mathrm{~s}, 1311 \mathrm{~s}, 1290 \mathrm{~s}$
$4-\mathrm{NH}$		
2		

${ }^{a}$ Ligand in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OOC}\right.$-furyl) ${ }_{2}$.
whereas those of the cyclopentadienyl rings are near 1450 and $1370 \mathrm{~cm}^{-1}$. Strong bands indicative of para-substitution are observed near $840 \mathrm{~cm}^{-1}$ for compounds 2-15, medium to strong bands reflecting meta substitution occur at $750-780 \mathrm{~cm}^{-1}$ and $860-900 \mathrm{~cm}^{-1}$ for compounds $16-23$, and medium to strong bands characteristic for ortho-substitution at $740-760 \mathrm{~cm}^{-1}$ for compounds 24-29. This again confirms the proposed structures. The positions of the bands assigned to asymmetric and symmetric COO stretching frequencies are listed in Table 7. Although in some cases the bands are split, possibly owing to crystal packing effects, the difference $\Delta \nu$ (defined as ν (asymmetric, COO) minus ν (symmetric, COO)) is in the range 300 to $370 \mathrm{~cm}^{-1}$ for all the compounds. This large difference is clear evidence of monodentate coordination of the benzoato ligands [25]. The actual value of $\Delta \nu$ depends upon the substituent on the phenyl ring. A qualitative analysis of the metaand para-substituted complexes, including those reported by Dang et al. [8], indicates there is an increase in $\Delta \nu$ with the electron-withdrawing ability of
Table 8. Far-infrared spectra of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{OOC}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}\right)_{2}\left(\mathrm{~cm}^{1}\right)$

X	Ligand band(s)	$\nu_{\text {as }}\left(\mathrm{Ti}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$	Ti-O	$\nu_{5}\left(\mathrm{Ti}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$	$\mathrm{Cp}-\mathrm{Ti}-\mathrm{Cp}$	$\mathrm{O}-\mathrm{Ti}-\mathrm{O}$
H	448 m	426s, 414vs		352m, 294w	$256 \mathrm{~m}, 239 \mathrm{~m}$	130 m
4- NH_{2}		443m, 417s	380 m	345w, 285w	251 m	125 m
$4-\mathrm{OMe}$		418 s	$404 \mathrm{~ms}, 389 \mathrm{~m}$	337w, 306w	265w, 245 m	128m, 123w
$4-\mathrm{OEt}$	468m, 438m	433vs, 418s	383 m	364m, 324w, 290w	250w, 236 m	142m, 118w
4-Me	468s	423s		285vw	251m	129w
$4-\mathrm{Et}$	452vw	420 vs	376w	366w, 281vw	256m, 243 m	$125 \mathrm{~m}, 120 \mathrm{~m}$
$4-\mathrm{t}-\mathrm{Bu}$	467vs, 447s	419s	396s, 379s	364m, 324 w , 290w	241 m	$122 \mathrm{~m}, 118 \mathrm{~m}$
4-Ph	488vs, 463s	416 m	402m, 392m, 379 w	366m, 298w	244 m	134w, 119m
4-F	464w, 438m	428 vs	393m, 376w	337w, 293w	$250 \mathrm{~m}, 236 \mathrm{~m}$	134m, 129m, 118w
$4-\mathrm{Cl}$	$477 \mathrm{~m}, 471 \mathrm{~s}$	433m, 414 s	406m, 392s	312w	253m, 244m, 224w	$134 \mathrm{~m}, 122 \mathrm{~m}$
$4-\mathrm{Br}$	482vs, $476 \mathrm{~s}, 467 \mathrm{~m}, 458 \mathrm{~m}$	418 m	396m, 376m	322w	264w, 248w, 231m	117 m
4-1	458s	414m	390 vw	368m, 315w	243m	115w
$4-\mathrm{CN}$		418s	401s, 386 s	351w, 329vw	249m, 238w	153s, 131w, 125w, 116w
$4-\mathrm{NO}_{2}$		424s, 409 m	401s, 381 s	335w, 286w	265w, 246m, 228m	$125 \mathrm{~m}, 121 \mathrm{~m}$
$4-\mathrm{CH}_{3} \mathrm{CONH}$	451 vs	417 m	403w, 385m	370w, 357w, 320w	245 m	119m
$3-\mathrm{OMe}$	$469 \mathrm{~ms}, 441 \mathrm{~m}$	425s, 417s	383 m	$363 \mathrm{~m}, 349 \mathrm{~m}$	251w, 232m	151w, 126m
3-Me	$490 \mathrm{~m}, 441 \mathrm{~s}$	433s, 415s		289w	232m	125 m
3-F	$453 \mathrm{~ms}, 443 \mathrm{vs}, 434 \mathrm{~m}$	429m, 422 m	402m, 379w	350w, 293w	243 m	$125 \mathrm{~m}, 118 \mathrm{~m}$
$3 . \mathrm{Cl}$	$495 \mathrm{~ms}, 449 \mathrm{vs}, 442 \mathrm{vs}$	$427 \mathrm{~m}, 417 \mathrm{~ms}$	$390 \mathrm{~m}, 375 \mathrm{w}$	344w, 321vw	$237 \mathrm{~m}, 204 \mathrm{~m}$	$125 \mathrm{~m}, 110 \mathrm{~m}$
$3-\mathrm{Br}$	$485 \mathrm{~ms}, 445 \mathrm{vs}, 438 \mathrm{vs}$	423s, 415s	375w	345w, 294vw	$239 \mathrm{~m}, 187 \mathrm{~m}$	$121 \mathrm{~m}, 93 \mathrm{~m}$
3-I	$483 \mathrm{~ms}, 475 \mathrm{~m}, 441 \mathrm{~m}$	433s, 415 m			$230 \mathrm{~m}, 176 \mathrm{~m}$	126w, 120w, 115w
$3-\mathrm{CN}$	460 vs	419 vs	405m, 376w	348w	243m	$156 \mathrm{~m}, 138 \mathrm{~m}, 125 \mathrm{w}$
$3-\mathrm{NO}_{2}$	453w, 436s	427vs, 413s		335w, 300w, 275w	240 m	$137 \mathrm{~m}, 125 \mathrm{~m}$
$2-\mathrm{Me}$	488m, 461s, 438s	422s		347w, 298vw	251 m	128 m
2-Ph	465s, 452vs	424 ms	398m, 393m	367w, 306w, 292m	259w, 235m, 199w	136 m
2-F	473m, 444s	418 m	391 m	334w, 293w	244m	126 m
$2-\mathrm{Cl}$	489s, 459 m	426 ms	396m, 376w	356w, 275w	243 m	126 m
2-I	$482 \mathrm{~m}, 465 \mathrm{~ms}$	$431 \mathrm{~s}, 420 \mathrm{~ms}$	377w	352w, 301w	245 m	143w
$2-\mathrm{CH}_{3} \mathrm{COO}$	$473 \mathrm{~m}, 463 \mathrm{vs}$	413 s		292w	234 m	$149 \mathrm{~m}, 124 \mathrm{~m}$
$2,4-\mathrm{Cl}, \mathrm{Cl}$	484w, 463w, 448m	433 vs	404m, 376w	352w	250m, 205w	$134 \mathrm{~m}, 123 \mathrm{~m}, 117 \mathrm{w}$
$3,4-\mathrm{Cl}, \mathrm{Cl}$	$452 \mathrm{~m}, 436 \mathrm{~s}$	429vs	396s	337w, 324w, 296w	$250 \mathrm{~m}, 235 \mathrm{~m}$	$117 \mathrm{~m}, 110 \mathrm{~m}$
2 -furyl ${ }^{\text {a }}$	462s, 455vs	419 s	387 m	352m, 291w, 278w	$262 \mathrm{~m}, 223 \mathrm{~m}, 163 \mathrm{~ms}$	139w

[^5]

Fig. 3. Far infrared spectrum ($50-450 \mathrm{~cm}^{-1}$) of bis(benzoato)bis(η-cyclopentadienyl)titanium(IV).
substituents as measured by Hammett σ_{m} and σ_{p} values. The values of $\Delta \nu$ also correlate with carbon chemical shifts of cyclopentadienyl and carboxylato groups; we interpret this as another reflection of the growing importance of resonance hybrid a relative to \mathbf{b} (Fig. 1) when electron-withdrawing substituents are present.

The far-infrared frequencies are listed in Table 8. In accord with previous reports [26-28] we assign the strong band appearing for all complexes at $420 \pm 10 \mathrm{~cm}^{-1}$ to the asymmetric $\mathrm{Ti}-\mathrm{Cp}$ stretching vibration. The corresponding symmetric stretching band appears in the region $335-370 \mathrm{~cm}^{-1}$ [26-28]. Its intensity is rather weak and it can consequently not be detected in some compounds. The $\nu_{\text {as }}(\mathrm{Ti}-\mathrm{Cp})$ and $\nu_{\mathrm{s}}(\mathrm{Ti}-\mathrm{Cp})$ bands can be regarded as arising from pure vibrations because substituents influence their position, profile and intensity only very slightly. However, it should be noted that electronic subsituent effects are negligable, while mass effects can be seen.

The bands in the range 375 to $405 \mathrm{~cm}^{-1}$ (see e.g. Fig. 3) are attributed to asymmetric and symmetric titanium-oxygen vibrations. The assignment is supported by the presence of very similar bands in the sodium salts of substituted benzoic acids. Since the $\mathrm{Ti}-\mathrm{Cl}$ stretching bands for $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ also appear near $400 \mathrm{~cm}^{-1}$, and the reduced mass of $\mathrm{Ti}-\mathrm{Cl}$ is larger than of $\mathrm{Ti}-\mathrm{O}$, the $\mathrm{Ti}-\mathrm{O}$ force constant must be smaller than of $\mathrm{Ti}-\mathrm{Cl}$. To the best of our knowledge data below $350 \mathrm{~cm}^{-1}$ are not yet available for these complexes. The bands around $300 \mathrm{~cm}^{-1}$ are assumed to arise from titanium-cyclopentadienyl stretching and those near $240 \mathrm{~cm}^{-1}$ from $\mathrm{Cp}-\mathrm{Ti}-\mathrm{Cp}$ deformation modes. The $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$ deformations probably appear in the range $140-110 \mathrm{~cm}^{-1}$. Interestingly the band is observed at $125 \pm 1 \mathrm{~cm}^{-1}$ for orthoand meta-substituted complexes, but near $120 \mathrm{~cm}^{-1}$ for most para-substituted derivatives.

The $\nu(\mathrm{Ti}-\mathrm{O})$ as well as $\delta(\mathrm{O}-\mathrm{Ti}-\mathrm{O})$ and $\delta(\mathrm{Cp}-\mathrm{Ti}-\mathrm{Cp})$ modes appear over a broad range with different profiles and intensities. This means that they are probably coupled with other modes (from the substituents). Thus the assignments shown in Table 8 must be regarded as approximate descriptions for these vibrations.

Finally, bands appearing above $440 \mathrm{~cm}^{-1}$ are believed to arise from benzoato ligand vibrations, because they are absent from the spectrum of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$.

Acknowledgement

We thank Mr. J. Claereboudt and Dr. M. Claeys (Biomedical Mass Spectrometry, University of Antwerp, UIA) for their cooperation in the linked scan experiments and recording of the FAB spectra.
Y.D. thanks the Antwerp Provincial Authorities for a predoctoral grant. Financial aid to the laboratory by the Belgian National Science Foundation (NFWO) is gratefully acknowledged. This text presents research results of the Belgian Program on Interuniversity Attraction Poles initiated by the Belgian State-Prime Minister’s Office-Science Policy Programming, but the scientific responsibility remains with the authors.

References

1 (a) For a review see F. Sato, J. Organomet. Chem., 285 (1985) 53; (b) S.A. Rao and M. Periasamy, ibid., 352 (1988) 125; (c) Y.M. Zhang, J.L. Jiang and Z.X. Zhang, Tetrahedron Lett., (1988) 651; (d) A.N. Kasatkin, A.N. Kulak and G.A. Tolstikov, J. Organomet. Chem. 346 (1988)' 23.

2 (a) K. Tatsumi, A. Nakamura, P. Hoffman, P. Stauffert and R. Hoffmann, J. Am. Chem. Soc., 107 (1985) 4440; (b) H.G. Alt, K.-H. Schwind and M.D. Rausch, J. Organomet. Chem., 321 (1987) C9.

3 (a) P. Köpf-Maier and H. Köpf, J. Organomet. Chem., 342 (1988) 167; (b) K. Döppert. ibid., 319 (1987) 351.

4 (a) Review: L.D. Durfee and I.P. Rothwell, Chem. Rev., 88 (1988) 1059; (b) H.G. Alt. H.E. Engelhardt, M.D. Rausch and L.B. Kool, J. Am. Chem. Soc., 107 (1985) 3717: (c) L.B. Kool, M.D. Rausch, H.G. Alt, M. Herberhold, B. Honold and U. Thewalt. J. Organomet. Chem.. 320 (1987) 37.
5 L. Gelmini and D.W. Stephan, Organometallics, 6 (1987) 1515.
6 H. Plenio, H.W. Roesky, M. Noltmeyer, G.M. Sheldrick, J. Chem. Soc. Chem. Comm., (1987) 1483.
7 K. Döppert, H.-P. Klein and U. Thewalt, J. Organomet. Chem., 303 (1986) 205.
8 Y. Dang, Y.H. Zhang and S.J. Shi, Synth. React. Inorg. Met. -Org. Chem. (1987) 347.
9 G.A. Razuvaev, V.N. Latyaeva and L.I. Vyshinskaya, Dokl. Akad. Nauk SSSR, 138 (1961) 1126.
10 J.G. Dillard and R.W. Kiser, J. Organomet. Chem., 16 (1969) 265.
11 P.M. Druce, B.M. Kingston, M.F. Lappert, T.R. Spalding, R.C. Sinstava, J. Chem. Soc. A. (1969) 2106.

12 A.N. Nesmeyanov, Y.S. Nekrasov, V.F. Sizoi, O.V. Nogina and Y.I. Sirotkina, J. Organomet. Chem., 61 (1973) 225.
13 D.F. Hunt, J.W. Russell and R.L. Torian, J. Organomet. Chem., 43 (1972) 175.
14 J. Pierce, K.L. Busch, R.A. Walton and R.G. Cooks, J. Am. Chem. Soc., 103 (1981) 2583.
15 U.A. Oldekop and V.A. Knuzokob, Zh. Obshch. Khim., 52 (1982) 1571.
16 G.X. Fu, Y.W. Wu, X.Y. Xu, Y.C. Zhang and P.Q. Lü, Org. Chem., 3 (1984) 212.
17 Gmelin Handbook of Inorganic Chemistry, 8th Ed., Organotitanium Compounds. Springer-Verlag, Berlin-Heidelberg, 1984, part 3, p. 23-33.
18 For more recent publications, see (a) T. Güthner and U. Thewalt. J. Organomet. Chem., 350 (1988) 235; (b) see ref. 7; (c) D.M. Hoffman, N.D. Chester and R.C. Fay, Organometallics, 2 (1983) 48; (d) S.C. Dixit, R. Sharan and R.N. Kapoor, Inorg. Chim. Acta, 151 (1988) 125; 158 (1989) 109.

19 C.E. Carraher, Jr., L.G. Tisinger and W.H. Tisinger, Polym. Sci. Technol., 33 (1986) 225.
20 C.R. Luas, E.J. Gabe and F.L. Lee, Can. J. Chem., 66 (1988) 429.
21 M.G. Alcock, E. Belcher, J.R. Majer and R. Perry, Anal. Chem., 42 (1970) 776.
22 E. Pretsch, T. Clerc, J. Seibl and W. Simon, in Tabellen zur Strukturaufklärung Organische Verbindungen mit Spektroskopische Methoden, Springer, Berlin, 1976.
23 G.K. Hamer, I.R. Peat and W.F. Reynolds, Can. J. Chem., 51 (1973) 897; G.K. Hamer, I.R. Peat and W.F. Reynolds, ibid., 51 (1973) 915.

24 Y. Kosugi and Y. Furuya, Tetrahedron, 36 (1980) 2741.
25 G.B. Deacon and R.J. Phillips, Coordin. Chem. Rev., 33 (1980) 227.
26 M. Spoliti, L. Bencivenni, A. Farina, B. Martini and S. Nunziante, J. Mol. Struct., 65 (1980) 105.
27 E. Maslowsky Jr., and K. Nakamoto, Appl. Spectr., 25 (1971) 187.
28 M.D. Rausch and H.B. Gordon, J. Organomet. Chem., 74 (1974) 85.
29 J. Bromilow, R.T.C. Brownlee, D.J. Craik, P.R. Fiske, J.E. Rowe and M. Sadek, J. Chem. Soc. Perkin Trans. II, (1981) 753.

[^0]: * Permanent address: Department of Chemistry, Shaanxi Teachers University, Xi'an (P.R. of China).

[^1]: ${ }^{a}$ Ligand in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\right.$ OOC-fury) ${ }_{2}$.

[^2]: ${ }^{a}$ Ligand in $\mathrm{C}_{\mathrm{P}_{2}} \mathrm{Ti}(\text { OOC-furyl) })_{2}$.

[^3]: ${ }^{a}$ Ligand in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\right.$ OOC-furyl) ${ }_{2}$.

[^4]: ${ }^{a}$ Ligand in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OOC}\right.$-furyl) ${ }_{2}$.

[^5]: ${ }^{a}$ Ligand in $\mathrm{Cp}_{2} \mathrm{Ti}(\text { OOC-furyl })_{2}$.

